Опыты на тему закон архимеда. Конспект занятия для детей подготовительного возраста по фэмп «по законам архимеда. Тонет ли тарелка

Выпуск 8

В видеоуроке физики от Академии занимательных наук профессор Даниил Эдисонович расскажет о древнегреческом учёном Архимеде и некоторых из его удивительных открытий. Как узнать, является ли золото чистым? Каким образом многотонные корабли умудряются плавать по океанским волнам? Наша жизнь полна загадочных явлений и хитрых головоломок. Физика способна подобрать ключи к некоторым из них. Посмотрев восьмой видеоурок физики вы познакомитесь с законом Архимеда и Архимедовой силой, а также историей их открытия.

Закон Архимеда

Почему в воде предметы весят меньше, чем на суше? Для человека пребывание в воде сравнимо с пребыванием в состоянии невесомости. Это используют в своих тренировках космонавты. Но из-за чего же так происходит? Дело в том, что на тела, погружённые в воду действует выталкивающая сила, открытая древнегреческим философом Архимедом. Закон Архимеда звучит так — погружённое в жидкость тело теряет в весе столько, сколько весит объём вытесненной им воды. Выталкивающую силу назвали Архимедовой, в честь первооткрывателя. Архимед, был одним из величайших ученых Древней Греции. Этот гениальный математик и механик, жил в Сиракузах в III веке до н. э. Вэто время в Сиракузах правил царь Гиерон. Однажды Гиерон, получив от мастеров заказанную им золотую корону, усомнился в их честности. Ему показалось, что они утаили часть золота, выданного на ее изготовление, и заменили его серебром. Но как уличить ювелиров в подделке? Гиерон поручил Архимеду определить, есть ли в золотой короне примесь серебра. Архимед искал решение задачи постоянно, не переставая думать об этом, когда занимался другими делами. А решение нашлось... в бане. Архимед, намылился золой и полез в ванну.И произошло то, что бывает всякий раз, когда любой человек, даже не ученый, садится в любую, даже не мраморную ванну — вода в ней поднимается. Но то, на что обычно Архимед не обращал никакого внимания, вдруг заинтересовало его. Он привстал - уровень воды опустился, он снова сел — вода поднялась; причем поднималась она по мере погружения тела. И вот в этот миг Архимеда осенило. Он усмотрел в десятке раз проведенном опыте намек на то, как объем тела связан с его весом. И понял, что задача царя Гиерона разрешима. И так обрадовался своей случайной находке, что как был - голый, с остатками золы на теле - побежал домой через город, оглашая улицу криками: «Эврика! Эврика!». Вот так Архимед, если верить легенде, нашел решение задачи Гиерона. Архимед попросил у царя два слитка — серебряный и золотой. Вес каждого слитка был равен весу короны. Положив в сосуд до краёв наполненный водой сначала серебряный, а затем золотой слиток, учёный измерил объём вытесненной каждым из слитков воды. Золото вытеснило меньше воды, чем серебро. А всё потому, что объём куска золота был меньше куска серебра такого же веса. Ведь золото тяжелее серебра. Затем Архимед погрузил в сосуд корону и измерил объём вытесненной ею воды. Корона вытеснила меньше воды, чем слиток серебра. но больше чем слиток золота. Так мошенничество ювелира было разоблачено. Благодаря Архимедовой силе способны плавать гигантские корабли, весящие сотни тысяч тонн. Это происходит благодаря тому, что они обладают большим водоизмещением. То есть, их объём таков, что вытесняет огромное количество воды. А как вы помните, чем больше объём тела, тем сильнее действует на него Архимедова сила.

Закон Архимеда – закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

История вопроса

«Эврика!» («Нашел!») – именно этот возглас, согласно легенде, издал древнегреческий ученый и философ Архимед, открыв принцип вытеснения. Легенда гласит, что сиракузский царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало – нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото. Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну – и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый побежал докладывать о своей победе в царский дворец, даже не потрудившись одеться.

Однако, что правда – то правда: именно Архимед открыл принцип плавучести. Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Давление, которое ранее действовало на вытесненную жидкость, теперь будет действовать на твердое тело, вытеснившее ее. И, если действующая вертикально вверх выталкивающая сила окажется больше силы тяжести, тянущей тело вертикально вниз, тело будет всплывать; в противном случае оно пойдет ко дну (утонет). Говоря современным языком, тело плавает, если его средняя плотность меньше плотности жидкости, в которую оно погружено.

Закон Архимеда и молекулярно-кинетическая теория

В покоящейся жидкости давление производится посредством ударов движущихся молекул. Когда некий объем жидкости вымещается твердым телом, направленный вверх импульс ударов молекул будет приходиться не на вытесненные телом молекулы жидкости, а на само тело, чем и объясняется давление, оказываемое на него снизу и выталкивающее его в направлении поверхности жидкости. Если же тело погружено в жидкость полностью, выталкивающая сила будет по-прежнему действовать на него, поскольку давление нарастает с увеличением глубины, и нижняя часть тела подвергается большему давлению, чем верхняя, откуда и возникает выталкивающая сила. Таково объяснение выталкивающей силы на молекулярном уровне.

Такая картина выталкивания объясняет, почему судно, сделанное из стали, которая значительно плотнее воды, остается на плаву. Дело в том, что объем вытесненной судном воды равен объему погруженной в воду стали плюс объему воздуха, содержащегося внутри корпуса судна ниже ватерлинии. Если усреднить плотность оболочки корпуса и воздуха внутри нее, получится, что плотность судна (как физического тела) меньше плотности воды, поэтому выталкивающая сила, действующая на него в результате направленных вверх импульсов удара молекул воды, оказывается выше гравитационной силы притяжения Земли, тянущей судно ко дну, – и корабль плывет.

Формулировка и пояснения

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается поднять на суше. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился.

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Формула

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле: F А = ρ ж gV пт,

где ρж – плотность жидкости,

g – ускорение свободного падения,

Vпт – объем погруженной в жидкость части тела.

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести Fт и архимедовой силы FA, которые действуют на это тело. Возможны следующие три случая:

1) Fт > FA – тело тонет;

2) Fт = FA – тело плавает в жидкости или газе;

3) Fт < FA – тело всплывает до тех пор, пока не начнет плавать.

Екатерина Попандопулос
Конспект занятия для детей подготовительного возраста по ФЭМП «По законам Архимеда»

Интеграция + художественно-эстетическое развитие.

Средства и оборудование : кувшин с водой, резиновый мяч, бумажные круги, напольная игра : «Компас»

Предварительная работа : просмотр мультфильма : «Коля, Оля, Архимед » .

Цель : познакомить с опытом Архимеда по измерению объёма тела.

Задачи :

О : учить детей измерять объём жидких и сыпучих веществ с помощью условной меры, закреплять умение детей ориентироваться по карте.

Р : развивать представление о том, что результат измерения (длины, веса, объёма предметов) зависит от величины условной меры.

В : воспитывать умение работать в команде, доброжелательное отношение друг к другу.

Ход занятия

Дети получают пиктограмму с помощью двух кругов, дети расшифровывают слово геометр.

Вопросы к детям Ответы детей

Какое слово получилось? Геометр

Кто такой геометр, чем он занимался? ученый специалист по геометрии, он ставил открытия.

Какого великого учёного вы знаете?

-Архимед

Воспитатель предлагает отправиться детям в путешествие, в город Сиракузы. Детям предлагается отправиться на машине времени.

Чтобы отправиться в путешествие, нам необходимо запустить машину времени. Пусковая кнопка состоит из нескольких сегментов, мы должны начать обратный отсчёт с числа равному количеству этих сегментов. (Дети путём наложения сегментов определяют его количественный состав, пишут цифру 6).

Дети считают в обратном порядке от 6.

На экране возникает слайд фрагмента из мультфильма «Коля, Оля, Архимед »

Воспитатель предлагает детям посмотреть опыт с водой, рассказывающий об одном из открытий Архимеда .

Дети повторяют данный опыт, используя различные тела погружая в воду, делая записи в соответствии с метками, с картой-листом опыта.

Песок вода изменилась +1

Магниты+1

После эксперимента детям опять показывают фрагменты мультфильма, посвящённый данному открытию.

Детям предлагается игра : «Компас» для того, чтобы добраться в лабораторию Архимеда .

Воспитатель даёт алгоритм задания. Дети попадают на выставку предметов, связанных с открытиями Архимеда (лопатка от миксера, винт, дрель, обычная рогатка, катапульта и набор ЛЕГО). Воспитатель объясняет, что труд Архимеда не забыт и до сих пор используется, предлагает детям собрать ЛЕГО конструктора модель , в которой используется подъёмный кран.

Дети считают по порядку до 6 и оказываются в детском саду.

В : Ребята, вот мы и оказались в детском саду. Я вам предлагаю отдохнуть. Я вам показываю, повторяйте за мной.

Мы гимнастику для глаз

Выполняем каждый раз,

Вправо, влево, кругом, вниз

Повторить ты не ленись.

Укрепляем мышцы глаз

Видеть будем сразу.

В : Ребята, молодцы. Вам понравилось наше путешествие?

Д : да

В : Что вам запомнилось?

Д : проводили опыты, расшифровывали слово.

В : Я очень рада что вы узнали много нового, а главное вам было интересно.

Публикации по теме:

Конспект занятия «Удивительное путешествие по «Четырём стихиям» для подготовительного возраста Тема: «Удивительное путешествие по «Четырём стихиям»». Цель: Формирование целостной картины мира, расширение кругозора детей.

Дидактическая игра для детей подготовительного возраста «Гости Петербурга» "Гости Петербурга" Дидактическая игра «Гости Петербурга». Дидактическая задача. 1. Уточнять и закреплять знания детей о достопримечательностях.

Конспект итоговой НОД по математике для детей подготовительного к школе возраста Конспект непрерывной образовательной деятельности по математике (итоговая) для детей подготовительного к школе возраста Приоритетная образовательная.

Конспект НОД по речевому развитию «Игрушки» для детей подготовительного возраста Цель: Обогащение и активизация словаря по теме. Задачи: 1. Коррекционно-обучающие уточнить, расширить и активизировать словарь по теме.

Конспект открытого занятия по ознакомлению с окружающим «В гостях у Лесовичка» для детей старшего и подготовительного возраста Цель: 1. Формировать будущее уважительное отношение ко всему живому, осознанного отношения к жизни. 2. Расширить кругозор знаний детей о.

Конспект туристического похода для детей подготовительного возраста «Где прячется здоровье?» Разработала и провела инструктор по физической.

Тема: Мой край родной, тебя люблю я! Цель: Формировать в ребенка чувство принадлежности к малой родине: родному городу, краю Программное.

ОПЫТЫ по теме «Архимедова сила»

Наука - это чудесно, интересно и весело. Но в чудеса со слов верится плохо, их надо потрогать собственными руками. Есть опыт - занимательный!
И, если ты внимательный,
Умом самостоятельный
И с физикой на «ты»
То опыт занимательный -
Весёлый, увлекательный -
Тебе откроет тайны
И новые мечты!

1) Живая и мертвая вода

Поставьте на стол литровую стеклянную банку, заполненную на 2/3 водой, и два стакана с жидкостями: один с надписью «живая вода», другой - с надписью «мёртвая». Опустите в банку клубень картофеля (или сырое яйцо). Он тонет. Долейте в банку «живую» воду - клубень всплывёт, добавьте «мёртвую» - он опять утонет. Подливая то одну, то другую жидкость, можно получить раствор, в котором клубень не будет всплывать на поверхность, но и ко дну не пойдёт.
Секрет опыта в том, что в первом стаканчике - насыщенный раствор поваренной соли, во втором - обычная вода. (Совет: перед демонстрацией картофель лучше очистить, а в банку налить слабый раствор соли, чтобы даже незначительное увеличение её концентрации вызывало эффект).

2) Картезианский водолаз из пипетки

Наполните пипетку водой так, чтобы она плавала вертикально, практически полностью погрузившись в воду. Опустите пипетку - водолаза в прозрачную пластиковую бутылку, доверху наполненную водой. Герметично закройте бутылку крышкой. При нажиме на стенки сосуда, водолаз начнёт заполняться водой. Изменяя давление, добейтесь, чтобы водолаз выполнял ваши команды: «Вниз!», «Вверх!» и «Стоп!» (остановка на любой глубине).

3) Непредсказуемый картофель

(Опыт можно провести с яйцом). Опустите клубень картофеля в стеклянный сосуд, наполовину заполненный водным раствором поваренной соли. Он плавает на поверхности.
Что произойдёт с картофелем, если подлить в сосуд воды? Обычно отвечают, что картофель всплывёт. Подливайте осторожно воду (её плотность меньше плотности раствора и яйца) через воронку по стенке сосуда, пока он не наполнится. Картофель, к удивлению зрителей, остаётся на прежнем уровне.

4) Вращающийся персик

Налейте в стакан газированной воды. Диоксид углерода, растворённый в жидкости под давлением, начнёт выходить из неё. Поместите в стакан персик. Он сразу всплывёт на поверхность и … начнёт вращаться, как колесо. Вести себя подобным образом он будет довольно долго.

Для того чтобы понять причину этого вращения, присмотритесь, что происходит. Обратите внимание на бархатистую кожицу фрукта, к волоскам которой будут прилипать пузырьки газа. Так как на одной половинке персика всегда будет больше пузырьков, то на неё действует большая выталкивающая сила, и она поворачивается вверх.

5) Сила Архимеда в сыпучем веществе

На представлении «Наследие Архимеда» жители Сиракуз соревновались в «доставании со дна морского жемчужины». Аналогичную, но более простую демонстрацию можно повторить, используя небольшую стеклянную банку с пшеном (рисом). Положите туда теннисный шарик (или корковую пробку) и закройте её крышкой. Переверните банку так, чтобы шарик оказался в её нижней части под пшеном. Если создать легкую вибрацию (легонько потрясти банку вверх-вниз), то сила трения между зёрнышками пшена уменьшится, они станут подвижными и шарик через некоторое время под действием силы Архимеда всплывёт на поверхность.

6) Пакет полетел без крыльев

Поставьте свечу, зажгите её, подержите над ней пакет, воздух в пакете нагреется,

Отпустив пакет, убедитесь, как под действием силы Архимеда пакет полетит вверх.

7) Разные пловцы по-разному плавают

Налейте в сосуд воды и масла. Опустите гайку, пробку и кусочки льда. Гайка окажется на дне, пробка на поверхности масла, лёд окажется на поверхности воды под слоем масла.

Это объясняется условиями плавания тел:

сила Архимеда больше силы тяжести пробки - пробка плавает на поверхности,

сила Архимеда меньше силы тяжести, действующей на гайку - гайка тонет

сила Архимеда, действующая на кусок льда больше силы тяжести льда - пробка плавает на поверхности воды, но так как плотность масла меньше плотности воды, и меньше плотности льда - масло останется на поверхности над льдом и водой

8) Опыт, подтверждающий закон

К пружине подвесьте ведёрко и цилиндр. Объём цилиндра равен внутреннему объёму ведёрка. Растяжение пружины отмечено указателем. Целиком погружайте цилиндр в отливной сосуд с водой. Вода выливается в стакан.

Объём вылившейся воды равен о бъёму погружённого в воду тела. Указатель пружины отмечает уменьшение веса цилиндра в воде, вызванное действием в ыталкивающей силы.

Выливайте в ведёрко воду из стакана и увидите, что указатель пружины возвращается к начальному положению. Итак, под действием архимедовой силы пружина сократилась, а под действием веса вытесненной воды вернулась в начальное положение. Архимедова сила равна весу жидкости, вытесненной телом.

9) Исчезло равновесие

Сделайте бумажный цилиндр, подвесим вверх дном на рычаг и уравновесим.

Поднесем спиртовку под цилиндр. Под действием тепла равновесие нарушается, сосуд поднимается вверх. Так как сила Архимеда растёт.

Такие оболочки, наполненные теплым газом или горячим воздухом называют воздушными шарами и применяют для воздухоплавания.

ВЫВОД

Проделав опыты, мы убедились, что на тела, погружённые в жидкости, газы и даже сыпучие вещества, действует сила Архимеда, направленная вертикально вверх. Архимедова сила не зависит от формы тела, глубины его погружения, плотности тела и его массы. Сила Архимеда равна весу жидкости в объёме погружённой части тела.

Один из первых физических законов, изучаемых учениками средней школы. Хотя бы примерно этот закон помнит любой взрослый человек, как бы далек он ни был от физики. Но иногда полезно вернуться к точным определениям и формулировкам - и разобраться в деталях этого закона, которые могли позабыться.

О чем говорит закон Архимеда?

Существует легенда, что свой знаменитый закон древнегреческий ученый открыл, принимая ванну. Погрузившись в емкость, наполненную водой до краев, Архимед обратил внимание, что вода при этом выплеснулась наружу - и испытал озарение, мгновенно сформулировав суть открытия.

Скорее всего, в реальности дело обстояло иначе, и открытию предшествовали долгие наблюдения. Но это не столь важно, потому что в любом случае Архимеду удалось открыть следующую закономерность:

  • погружаясь в любую жидкость, тела и объекты испытывают на себе сразу несколько разнонаправленных, но направленных перпендикулярно по отношению к их поверхности сил;
  • итоговый вектор этих сил направлен вверх, поэтому любой объект или тело, оказавшись в жидкости в состоянии покоя, испытывает на себе выталкивание;
  • при этом сила выталкивания в точности равна коэффициенту, который получится, если умножить на ускорение свободного падения произведение объема предмета и плотности жидкости.
Итак, Архимед установил, что тело, погружённое в жидкость, вытесняет такой объём жидкости, который равен объёму самого тела. Если в жидкость погружается только часть тела, то оно вытеснит жидкость, объём которой будет равен объёму только той части, которая погружается.

Та же самая закономерность действует и для газов - только здесь объем тела необходимо соотносить с плотностью газа.

Можно сформулировать физический закон и немного проще - сила, которая выталкивает из жидкости или газа некий предмет, в точности равна весу жидкости или газа, вытесненных этим предметом при погружении.

Закон записывается в виде следующей формулы:


Какое значение имеет закон Архимеда?

Закономерность, открытая древнегреческим ученым, проста и совершенно очевидна. Но при этом ее значение для повседневной жизни невозможно переоценить.

Именно благодаря познаниям о выталкивании тел жидкостями и газами мы можем строить речные и морские суда, а также дирижабли и воздушные шары для воздухоплавания. Тяжелые металлические корабли не тонут благодаря тому, что их конструкция учитывает закон Архимеда и многочисленные следствия из него - они построены так, что могут удерживаться на поверхности воды, а не идут ко дну. По аналогичному принципу действуют воздухоплавательные средства - они используют выталкивающие способности воздуха, в процессе полета становясь как бы легче него.